
FINDING NONOVERLAPPING SUBSTRUCTURES OF A SPARSEMATRIX�ALI PINARy AND VIRGINIA VASSILEVSKAzAbstra
t. Many appli
ations of s
ienti�
 
omputing rely on 
omputations on sparse matri
es,thus the design of eÆ
ient implementations of sparse matrix kernels is 
ru
ial for the overall eÆ-
ien
y of these appli
ations. Due to the high 
ompute-to-memory ratio and irregular memory a

esspatterns, the performan
e of sparse matrix kernels is often far away from the peak performan
e on amodern pro
essor. Alternative data stru
tures have been proposed, whi
h split the original matrixA into Ad and As, so that Ad 
ontains all dense blo
ks of a spe
i�ed size in the matrix, and As
ontains the remaining entries. This enables the use of dense matrix kernels on the entries of Adprodu
ing better memory performan
e. In this work, we study the problem of �nding a maximumnumber of nonoverlapping re
tangular dense blo
ks in a sparse matrix, whi
h has not been studiedin the sparse matrix 
ommunity. We show that the maximum nonoverlapping dense blo
ks problemis NP-
omplete by using a redu
tion from the maximum independent set problem on 
ubi
 planargraphs. We also propose a 2=3-approximation algorithm for 2� 2 blo
ks that runs in linear time inthe number of nonzeros in the matrix. We dis
uss alternatives to re
tangular blo
ks su
h as diagonalblo
ks and 
ross blo
ks and present 
omplexity analysis and approximation algorithms.Key words. Memory performan
e, memory-eÆ
ient data stru
tures, high-performan
e 
om-puting, sparse matri
es, independent sets, NP-
ompleteness, approximation algorithms.1. Introdu
tion. Sparse matri
es lie in the hearts of many 
omputation-intensiveappli
ations su
h as �nite-element simulations, de
ision support systems in manage-ment s
ien
e, power systems analysis, 
ir
uit simulations, and information retrieval.The performan
es of these appli
ations dire
tly rely on the performan
es of the em-ployed sparse matrix kernels . The memory performan
e of sparse matrix operationson modern pro
essors however, is often a bottlene
k due to the irregular memory-a

ess patterns of sparse matrix operations, and extra memory load operations re-quired to exploit sparsity. The memory-performan
e bottlene
k is be
oming more
ru
ial everyday, arguably be
oming the most important problem in high perfor-man
e 
omputing. To over
ome this memory bottlene
k designing alternative datastru
tures for sparse matri
es that are memory friendly has been investigated. One
ommon approa
h in these e�orts is to exploit the spe
ial substru
tures in a sparsematrix, su
h as small dense matri
es, to de
rease the number of extra load operations.In this paper, we study the problem of �nding a maximumnumber of nonoverlappingsubstru
tures in a sparse matrix, with the obje
tive of improving the e�e
tiveness ofalternative sparse matrix data stru
tures that exploit dense blo
ks.Conventional data stru
tures for sparse matri
es have two 
omponents: an ar-ray that stores 
oating-point entries of the matrix and arrays that store the nonzerostru
ture (i.e., pointers to the lo
ations of the numeri
al entries). Exploiting spar-sity invariably requires using pointers, but pointers often lead to poor memory per-forman
e. One reason for the poor memory performan
e is that pointers 
ause anirregular memory a

ess pattern and thus poor spatial lo
ality. Another importantreason, whi
h is often overlooked, is the extra load operations. Ea
h operation on anonzero entry requires loading the lo
ation of that nonzero before loading the a
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2 V. Vassilevska and A. Pinar0BBB� x x xx xx x x xx x x 1CCCA = 0BBB� x xx x x xx x 1CCCA + 0BBB� xx x x 1CCCAA = A12 + A11Fig. 1.1. Matrix splitting.
oating point number. For instan
e, sparse matrix ve
tor multipli
ation, whi
h is oneof the most important kernels in numeri
al algorithms, requires three load operationsfor ea
h multiply-and-add operation. And it has been observed that this overheadmight be as 
ostly as the 
oating point operations [5℄.Re
ent studies have investigated improvingmemory performan
e of sparse matrixoperations by redu
ing the number of extra load operations [5, 8, 9, 10℄. Toledo [9℄studied splitting the matrix as A = A12+A11, where A12 in
ludes 1� 2 blo
ks of thematrix (two nonzeros in 
onse
utive positions on the same row), and A11 
overs theremaining nonzeros, as illustrated in Fig. 1.1. Noti
e that it is suÆ
ient to store apointer for ea
h blo
k in A12. In [8℄, P�nar and Heath studied the reordering problemto in
rease the sizes of these blo
ks. They proposed a graph model to redu
e thematrix ordering problem to the traveling salesperson problem. Vudu
 et al. studiedvarious blo
king te
hniques to de
rease load operations, and improve 
a
he utiliza-tion [10℄. Signi�
ant speedups in large experimental sets have been observed, whi
hgives motivation to sear
h for larger blo
ks in the matrix for further improvementsin performan
e. Splitting operation 
an be generalized to exploit arbitrary substru
-tures. For instan
e, one 
an split the matrix into A = Ad +As, where Ad 
ontains allspe
i�ed substru
tures, and As 
ontains the remaining entries. Clearly, for a spe
i-�ed substru
ture, having more entries in Ad merits fewer load operations, thus bettermemory performan
e. This 
alls for eÆ
ient algorithms to �nd a maximum numberof nonoverlapping substru
tures in a sparse matrix. A greedy algorithm is suÆ
ientto �nd a maximum number of nonoverlapping m � n dense matri
es when m = 1 orn = 1. However, this problem is mu
h harder when m;n � 2.In this work, we study the problem of �nding a maximum number of nonover-lapping substru
tures of a sparse matrix, whi
h we 
all the maximum nonoverlappingsubstru
tures problem. We fo
us on m � n dense blo
ks as a substru
ture, due totheir availability in sparse matri
es arising in various appli
ations, and e�e
tivenessin de
reasing extra load operations. We 
all this problem the maximum nonoverlap-ping dense blo
ks problem. In the next se
tion, we de�ne the problem formally andinvestigate its relation to the maximum independent set problem. We de�ne a 
lassof graphs where the independent set problem is equivalent to the maximum nonover-lapping dense blo
ks problem. In Se
tion 3, we use this relation to prove that themaximum nonoverlapping dense blo
ks problem is NP-
omplete. Our proof uses aredu
tion from the maximum independent set problem on 
ubi
 planar graphs andadopts orthogonal drawings of planar graphs. Se
tion 4 presents an approximationalgorithm for the problem. Sin
e we are motivated by improvingmemory performan
eof sparse matrix operations, we are interested in fast and e�e
tive heuristi
s for theprepro
essing 
ost to be amortized over the speedups in subsequent sparse matrixoperations. Our algorithms require only linear time and spa
e, and generate solutions



Finding dense blo
ks of a sparse matrix 3whose sizes are within 2=3 of the optimal. In Se
tion 5, we dis
us alternative patternsto re
tangular blo
ks. We show that the problem of �nding diagonal blo
ks 
an beredu
ed to that of �nding re
tangular blo
ks, and thus the problem is NP-
omplete,and our 2/3-approximation algorithm is valid for diagonal blo
ks as well. We alsodis
uss the 
ross blo
ks, prove that �nding a maximum set of nonoverlapping 
rossblo
ks is NP-
omplete, and generalize our results for variations of the 
ross blo
k. Wepresent some open problems in Se
tion 6 and 
on
lude with Se
tion 7.The problem of �nding nonoverlapping dense blo
ks of a sparse matrix has notbeen studied in the sparse-matrix 
ommunity. We have been re
ently aware of thework by Berman et al. [2℄, where a similar problem is dis
ussed as the optimal tilesalvage problem. In the optimal tile salvage problem, we are given an pN � pNregion of the plane tiled with unit squares, some of whi
h have been removed. Thetask is to �nd a maximumnumber of fun
tional nonoverlappingm�n tiled re
tangles.The di�eren
e between our problem and the optimal tile salvage problem is that inthe tile salvage problem the tiles are allowed to be in any orientation (m�n or n�m),whereas in our 
ase the orientation is �xed (only m� n). The two problems 
oin
idein the 
ase of square dense blo
ks. Berman et al. proved the NP-
ompleteness ofthe tile salvage problem, however their proof exploits the 
exibility in the orientationof the dense blo
k, and thus our proof is signi�
antly di�erent. Berman et al. alsodes
ribe an (1 � �)-approximation algorithm, whi
h would work for square blo
ks,for � = O(1=pÆ logM ), where M is the optimal solution value. Their algorithmis based on maximum planar H-mat
hing whi
h runs in O(N1+Æ) steps for smallÆ > 0. Baker [1℄ also has an algorithm for the 
ase of square blo
ks, whi
h runsin O(8kN )-time and O(4kN ) spa
e and produ
es a (k � 1)=k-approximation. Bothof these algorithms however are 
omplex and hard to implement. The greedy 2=3-approximation algorithms we propose are very simple. It requires linear time andspa
e, with very small 
onstant fa
tors in the time and spa
e bounds. Our algorithmrequires only one pass through the matrix, and thus is I/O-eÆ
ient.2. Preliminaries. In this se
tion we de�ne the problems formally, and presentde�nitions and some preliminary results that will be used in the following se
tions.2.1. ProblemDe�nition. This work investigates the problem of �nding a max-imum number of nonoverlapping matrix substru
tures of pres
ribed form and orien-tation.Definition 2.1. An m � n pattern is a 0-1 m � n matrix �. An oriented �-substru
ture of a matrix A is an m � n submatrix M in A so that M (i; j) 6= 0 if�(i; j) = 1 for 1 � i � m, and 1 � j � n. Two substru
tures M and N overlap ifthey share nonzero entry e in M with 
oordinates (iM ; jM) in M and (iN ; jN ) in Nand �(iM ; jM) = �(iN ; jN ) = 1.Given a parti
ular pattern �, we de�ne themaximum nonoverlapping �-substru
tures(MNS) problem as follows.Given an M �N matrix A and integer K, does A 
ontain K disjoint�-substru
tures?In this paper, we mostly fo
us on dense blo
ks, due to their simpli
ity, and theire�e
tiveness in speeding up sparse matrix operations. A dense blo
k of a matrix is asubmatrix of spe
i�ed size all of whose entries are nonzero, i.e., it is a �-substru
turewhere � is the all 1s matrix. We identify a dense blo
k with its upper left 
orner.Two blo
ks overlap if they share a matrix entry. Formally,



4 V. Vassilevska and A. PinarGiven an M � N matrix A = (aij), we say bij is an m � n denseblo
k in A i� akl 6= 0 for all k and l su
h that i � k < i + m � Mand j � l < j + n � N . Two m � n blo
ks bij and bkl overlap i�i � k < i+m and j � l < j +n, or k � i < k+m and l � j < l+n.We de�ne the maximum nonoverlapping dense blo
ks (MNDB) problem, whi
hrestri
ts the MNS problem to dense blo
ks as follows.Given an M �N matrix A, positive integers m and n that de�ne theblo
k size, and a positive integer K, does A 
ontain K disjoint m�ndense blo
ks?2.2. Interse
tion Graphs. It is easy to �nd all spe
i�ed patterns in a matrix,however what we need is a subset with nonoverlapping blo
ks. In this sense, the MNSproblem is related to the maximum independent set (MIS) problem, whi
h is de�nedas �nding a maximum 
ardinality subset of verti
es I of a graph G, su
h that no twoverti
es in I are adja
ent. Below we de�ne an interse
tion graph, whi
h reveals therelation between the independent set and the nonoverlapping blo
ks problems more
learly.Definition 2.2. A graph G is an interse
tion graph of the �-substru
tures of amatrix A if there is a bije
tion � between the verti
es of G and the substru
tures ofA, su
h that there is an edge in G between �(s1) and �(s2) if and only if s1 and s2overlap in A.We will use G(A;m; n) to refer to the interse
tion graph of dense m�n blo
ks inmatrix A. A maximum independent set on G(A;m; n) gives a maximum number ofnonoverlapping blo
ks in A, thus the MNDB problem 
an be redu
ed to the maximumindependent set problem, whi
h is known to be NP-
omplete [4℄. However it is impor-tant to note that the blo
k interse
tion graphs have spe
ial stru
tures, whi
h 
an beexploited for eÆ
ient solutions. For instan
e, a greedy algorithm is suÆ
ient to �nda maximum number of nonoverlapping 1� n and m� 1 blo
ks, sin
e these problemsredu
e to a family of disjoint maximum independent set problems on interval graphs.In the remainder of this se
tion, we de�ne the 
lass of graphs that 
onstitute blo
kinterse
tion graphs. An interse
tion graph of a set of 2� 2 dense blo
ks is an indu
edsubgraph of the so 
alled X-grid whi
h 
onsists of the usual 2 dimensional grid, anddiagonals for ea
h grid square. In general, the interse
tion graph of a set of m � ndense blo
ks is an indu
ed subgraph of the Xmn grid. Below, we �rst de�ne an Xmngrid, and then restri
t the de�nition to de�ne the graph 
lass X�mn that representgraphs that 
an be an interse
tion graph for a matrix.Definition 2.3. An M � N Xmn grid is a graph with a vertex set V and anedge set E, so that� V = fvij : 1 � i �M �m; 1 � j � N � n+ 1g� E = f(vij; vkl) : 1 � i; k � M � m + 1; 1 � j; l � N � n + 1 : ji � kj <m; jj � lj < ngIn an Xmn grid, vertex vij 
orresponds to the blo
k bij in the matrix, and edges
orrespond to all possible overlaps between blo
ks. Note that not all indu
ed sub-graphs of the Xmn grid are interse
tion graphs of a matrix. We de�ne a graph 
lassX�mn in whi
h ea
h graph 
orresponds to an interse
tion graph G(A;m; n) of the set



Finding dense blo
ks of a sparse matrix 5of m� n dense blo
ks of a matrix A, and ea
h su
h interse
tion graph is in the 
lass.Definition 2.4. A graph G = (V;E) is in the graph 
lass X�mn if and only ifit is an indu
ed subgraph of an Xmn grid and has the 
losure property so that vij 2 Vif 8i � k < i+m; j � l < j + n; 9vst : s � k < s +m and t � l < t+ nThe 
losure property enfor
es that there is a vertex in the graph for ea
h blo
k inthe matrix. Being an indu
ed subgraph of an X grid guarantees that there is an edgefor ea
h overlap. The graphs in this 
lass are exa
tly the interse
tion graphs of them� n blo
ks in a matrix, thus �nding a maximum independent set of a graph in this
lass is equivalent to solving the MNDB problem of the 
orresponding dense matrixblo
ks. This 
laim is formalized by the following lemma.Lemma 2.1. An instan
e of the MNDB problem for �nding m�n nonoverlappingdense blo
ks in a matrix A is polynomially equivalent to an instan
e of MIS for a graphin X�mn.Proof. As we dis
ussed earlier, the MNDB problem 
an be redu
ed to the problemof �nding an independent set on its interse
tion graph. Here we show the one-to-one
orresponden
e between interse
tion graphs, and graphs in X�mn. Remember thatea
h dense blo
k bij 
orresponds to the vertex vij in G(A;m; n). By de�nition of the
lass X�mn, G(A;m; n) 2 X�mn, thus any instan
e of an MNDB problem 
an beredu
ed to an independent set problem in a graph in X�mn.Given a graph G in X�mn, de�ne A = (aij), so that aij is a nonzero i� k � i <k + m and l � j < l + n for some vertex vkl in G. Observe that any dense blo
k inA must be represented by a vertex in G due to the 
losure property. Also, for anytwo adja
ent verti
es in G, 
orresponding blo
ks interse
t in A, and no other blo
ksoverlap, due to the de�nition of edges in Xmn. Thus, a maximum-
ardinality subsetof nonoverlapping blo
ks in matrix A 
orresponds to a maximum independent set inG 2 X�mn.In this paper we will use the graph 
lass X�22 to prove the NP-
ompleteness ofthe MNDB problem for 2� 2 blo
ks. Our proof 
an be generalized to arbitrary sizedblo
ks, showing the NP-
ompleteness of the MNDB problem for m � n blo
ks, andhen
e the NP-
ompleteness of the maximum independent set problem for graphs in
lass X�mn.The following lemma shows that removing a subset of the verti
es along withtheir neighbors preserves the 
hara
teristi
s of the graph, providing the basis forgreedy approximation algorithms as will be presented in Se
tion 4.Lemma 2.2. Let G = (V;E) be a graph in X�mn, S � V a subset of verti
es,and N (S) = fu j (u; v) 2 E; v 2 S; u =2 Sg be the neighborhood of S in G. Then thegraph G0 indu
ed by V n (S [N (S)) is still in X�mn.Proof. Removing a vertex and its neighbors in G 
orresponds to removing allnonzeros in a bl o
k in the 
orresponding matrix. The remaining graph is the inter-se
tion graph of the resulting matrix.2.3. Planar Graphs and Orthogonal Drawings. A graph G is planar if andonly if there exists an embedding of G on the sphere su
h that no two edges have apoint in 
ommon besides the verti
es. G is 
ubi
 planar if every vertex has degree 3.An orthogonal drawing of a graph G is an embedding of G onto a 2-dimensionalre
tangular grid su
h that every vertex is mapped to a grid point and every edge ismapped to a 
ontinuous path of grid line segments 
onne
ting the end points of the
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2 Fig. 2.1. Planar orthogonal drawingedge. When G is planar, the edge paths do not 
ross. An example of orthogonalembedding of a planar graph is illustrated in Fig. 2.1. As seen in this �gure, we referto a grid point where an edge path 
hanges dire
tion as a bend. No two edges share agrid segment or a bend, and no edge path 
an go through a vertex unless this vertexis an end point of the edge 
orresponding to the path and is an end point of the pathitself. A mark in an orthogonal drawing of a graph is a grid point that an edge passesthrough,but not a vertex in the original graph. The following result has been reportedby de Fraysseix et al. [3℄, Kant [6℄, and Papakostas and Tollis [7℄.Theorem 2.3. Every planar graph G with vertex degree at most 4 
an be drawnorthogonally with at most bn2 
+ 1 bends on an bn2 
 � bn2 
 grid in linear time.In parti
ular, this shows that every 
ubi
 planar graph G = (V;E) 
an be embed-ded orthogonally in an O(jV j)�O(jV j) grid in polynomial time. The NP-
ompletenessproof in the next se
tion uses a redu
tion from the maximum independent set (MIS)problem on 
ubi
 planar graphs, and adopts orthogonal drawings.3. Complexity. This se
tion proves that the MNDB problem is NP-
ompletefor 2�2 blo
ks. We use a redu
tion from the independent set problem on 
ubi
 planargraphs, whi
h is NP-
omplete [4℄. Throughout this se
tion, we let X� denote X�22.The next lemma explains how we 
an retain independent set 
hara
teristi
s of theproblems after transformations.Lemma 3.1. Let G = (V;E) be a graph, and u; v be two adja
ent verti
es in G,so that all neighbors of u besides v are also neighbors of v. Let G0 = (V 0; E0) be thegraph G after vertex v is removed. The size of the maximum independent set in G isequal to the size of the maximum independent set in G0.Proof. If vertex v is in a maximum independent set I, then none of its neighborsare in I. Thus I 0 = I [ fvg n fug is an independent set in G and in G0 of the samesize as I.Corollary 3.2. Let G 2 X� 
ontain the graph H in Fig. 3.4(a) as an indu
edsubgraph so that all verti
es ex
ept for possibly v1; v2 and v3 have all of their neighborsin H. Then any instan
e (G, K) of MIS is equivalent to the instan
e (G0, K) of MISfor the graph G0 = G n fw1; w2g.Proof. By Lemma 3.1, we 
an remove w1 from the graph sin
e all neighbors ofx1 are neighbors of w1 as well. The redu
ed graph is illustrated in Fig. 3.4(b). Againusing Lemma 3.1, we 
an remove w2 sin
e it 
overs all neighbors of x2. Note thatwe 
an apply the same transformation to add verti
es w1 and w2 to the graph inFig. 3.4(
).The following lemma des
ribes how edges of a graph 
an be repla
ed by paths,while preserving independent set 
hara
teristi
s.
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Fig. 3.1. Enlargement operation for K = 1Lemma 3.3. Let G = (V;E) be a graph and e = (vi; vj) 2 E be an edge. LetGe;k be the graph G with the edge e substituted by a simple path vi; w1; w2; : : : ; w2k; vjwhere k 2 Z+ and wi are new verti
es not in the original graph. Then there exists anindependent set of size K in G if and only if there exists an independent set of sizeK + k in Ge;k.Proof. We present the proof for k = 1, and the result follows by indu
tion.SuÆ
ien
y: Let I be an independent set in G, then either vi 62 I or vj 62 I. Withoutloss generality, assume vi 62 I, then I 0 = I [ fw1g is an independent set in Ge;k.Ne
essity: Let I 0 be an independent set in Ge;k. If w1 2 I 0, then vi 62 I 0, thusI = I 0 n fw1g is an independent set in G. Symmetri
ally, if w2 2 I 0, then vj 62 I 0,thus I = I 0 n fw2g is an independent set in G. If w1; w2 62 I 0, then I = I 0 n fv2g is anindependent set in G.Theorem 3.4. Problem MNDB is NP-
omplete for 2� 2 blo
ks.Proof. As dis
ussed in the previous se
tion, the problem of �nding maximumnumber of nonoverlapping dense blo
ks in a sparse matrix 
an be redu
ed to theproblem of �nding a maximum independent set in the interse
tion graph of the ma-trix, and thus is in NP. For the NP-
ompleteness proof we use redu
tion from theindependent set problem on 
ubi
 planar graphs, whi
h is NP-
omplete [4℄. We �rstuse Theorem 2.3 to embed a 
ubi
 planar graph onto a grid. Then we transform theembedded graph so that it is in X�. Our transformations preserve independent set
hara
teristi
s so that an independent set in the transformed graph 
an be translatedto an independent set in the original graph. Finally, we use Lemma 2.1 to relate theindependent set problem on a graph in X�, to the MNDB problem, and 
on
lude theMNDB problem is NP-
omplete.Our transformations are lo
al, so we �rst enlarge the grid to make room for thesetransformations. The enlargement operation inserts K new grid points between twogrid points in the original. An example is illustrated in Fig. 3 for K = 1. After theenlargement, ea
h edge is now repla
ed by a path of K verti
es (whi
h we distinguishfrom the original verti
es by 
alling themmarks). Two adja
ent verti
es in the originalgraph are now at a distan
e K +1, whi
h generates a K �K area around ea
h vertexfor lo
al transformations. In this proof, it is suÆ
ient to use K = 100.We 
an break down our transformations into 2 steps. The �rst step guaranteesthat the transformed graph is in X�. For this purpose, we need to have an edgebetween all pairs of verti
es for whi
h the 
orresponding blo
ks overlap so that thegraph is in X�, and we need to insert verti
es into the graph if ne
essary so thatthe 
losure property is satis�ed. The se
ond step makes sure that ea
h edge in theoriginal graph is repla
ed by an even-length path after the orthogonal embedding and
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vij vij+1

vi−1j vi−1j

vij+1Fig. 3.2. Bend transformation
Fig. 3.3. T-jun
tion transformationtransformations. Then we have su

essfully transformed the independent set problemon the 
ubi
 planar graph to an independent set problem on a graph inX�, and we 
an
on
lude the NP-
ompleteness of the MNDB problem using the result of Lemma 2.1.We need to 
onsider two 
ases for the �rst step. One is a bend neighborhood asillustrated in Fig. 3.2, and the other is a T- jun
tion. As illustrated in Fig. 3.3 a T-jun
tion is just a neighborhood of a vertex in the original graph. Noti
e that the onlyremaining 
ase is a path of verti
es, whi
h does not 
ause any problems. Consider abend vij 
onne
ted to two other marks vi�1j and vij+1. Note that vij 
annot be avertex in the original graph, sin
e the original graph is 
ubi
. In a graph in X�, theremust be and an edge between vi�1j and vij+1. We 
an remove vij , and 
onne
t vi�1jand vij+1 as in Fig. 3.2.Now 
onsider a T-jun
tion with vertex vij at the 
enter, as illustrated in Fig. 3.3.The neighborhood of vij is 
omposed of (up to a rotation) vij�1, vij+1, and vi�1 j ,none of whi
h is a vertex in the original graph. As in the 
ase of a bend, the problemhere is the absen
e of edges between vij�1 and vi�1 j , and between vi�1 j and vij+1,for whi
h the asso
iated blo
ks will overlap. Also observe that vij must be a vertexof the original graph, and 
annot be eliminated. We 
an make the transformationillustrated in Fig. 3.3, yet the resulting graph is still not in X�, sin
e it has missingverti
es, and does not satisfy the 
losure property. We 
an use Corollary 3.2 to addverti
es to the graph as depi
ted in Fig. 3.4, so that the resulting graph is in X�.By Lemma 3.3, we need ea
h path repla
ing an edge of the planar graph to beof even length. For ea
h edge going through an odd number of marks we know thatthere is a straight line segment going through at least 7 marks, due to the initialenlargement. We 
an repla
e this 7 vertex segment with an 8 vertex segment, toguarantee that the path representing an edge is of even length. This transformationis illustrated in Fig. 3.5. After this step, we have a graph in X� that repla
es ea
hedge in the original graph with an even length path.Noti
e that all our transformations require polynomial time and spa
e, thus the
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w1 Fig. 3.4. Transformation to preserve 
losure properties
Fig. 3.5. Odd-to-even length transformation to preserve independent set 
hara
teristi
s.size of the �nal embedded graph is polynomial in the size of the original graph.This redu
es the independent set problem for 
ubi
 planar graphs to an indepen-dent set problem in a graph in 
lass X�. By the result of Lemma 2.1, we know theindependent set problem on a graph in X� is equivalent to a MNDB problem in amatrix. Thus we redu
ed the independent set problem for 
ubi
 planar graphs to theMNDB problem, whi
h 
on
ludes our proof.Our proof serves as a template to prove NP-
ompleteness of alternative substru
-tures. Below, we generalize our result for arbitrary m � n blo
ks. In Se
tion 5, wewill use the same template to prove NP-
ompleteness of the MNS problem for 
rossblo
ks.Theorem 3.5. Problem MNDB is NP-
omplete for m � n blo
ks for m;n > 2.Proof. The redu
tion is again from the independent set problem on 3-planargraphs, and our proof uses only a minor modi�
ation to the proof of Theorem 3.4.Given a 3-planar graph GP , we use exa
tly the same transformation as in Theorem 3.4,so that we have a graph G = (V;E) 2 X�22. What we need a is a graph in X�mn.We will map verti
es and edges G, whi
h is on an (M � m + 1) � (N � n + 1) grid,onto an [(M � m + 1)(m � 1) + 1℄ � [(N � n + 1)(n � 1) + 1℄ Xmn grid to attainG0 = (V 0; E0) 2 X�mn. Our mapping stret
hes the graph so that overlaps of m � nblo
ks are minimal. That is blo
ks on the same row (
olumn) overlap at m�1 (1�n)blo
ks if they overlap. All other blo
ks overlap at 1 � 1 blo
ks at most. Ea
h vertexin V 0 is an image of a vertex in V , so that vij 2 V is mapped to the vertex position(i � (m � 1); j � (n� 1) in G0. Similarly, all edges in E0 are images of edges in E, so
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es in V 0 are 
onne
ted if and only if 
ounterparts are 
onne
ted in G.The two graphs G and G0 are essentially the same, thus an independent set onone 
an be trivially translated to an independent set on the other. Also G0 2 X�mn,sin
e it 
ontains edges for all potential overlaps. This 
on
ludes that the independentset problem on a 3-planar graph 
an be translated to an independent set problem ona graph in X�mn, and thus the MNDB problem on a sparse matrix.4. ApproximationAlgorithms. In this se
tion, we present a 2=3-approximationalgorithm for the MNDB problem for 2 � 2 blo
ks. Now that we know the problemis NP-
omplete, we have to resort to heuristi
s for a fast and e�e
tive solution. Re-member that our motivation for investigating this problem is speeding up sparsematrix-ve
tor multipli
ation. Our methods will be used in a prepro
essing phase,thus they must be fast, for their 
ost to be amortized by the speedup in subsequentsparse matrix-ve
tor multipli
ations.Berman et al. [2℄, propose an approximation algorithm for square blo
ks, whi
huses the Lipton-Tarjan planar separator algorithm to get a (1 � �)-approximation,where � = O(1=pÆlogM ) in O(n1+Æ) time, for any Æ > 0, where M is the size of anoptimal solution. Baker [1℄ gives an (k�1)=k-approximation, whi
h uses O(8kn) timeand O(4kn) spa
e.Below we propose a greedy approa
h for the 2 � 2 
ase, whi
h in the 1=2-approximation 
ase is appli
able to general m � n re
tangular blo
ks. Unlike thetwo algorithms 
ited, due to its greedy nature it is simple and very easy to imple-ment. It is pass-eÆ
ient, and takes time and spa
e linear in the number of blo
ks ofthe matrix, with very small 
onstant fa
tors in the bounds.First note that an easy 1=2-approximation to the MNDB problem with 2 � 2,whi
h runs in linear time in the number of blo
ks, is a
hieved by �nding the leftmostblo
k in the topmost row, adding it to the 
urrent independent set, and then repeatingthe same operation after removing this vertex and all its neighbors. Note that at mosttwo of the verti
es 
an be independent among those removed from the graph, thuswe have a 1=2-approximation algorithm. In this se
tion we show how to improve thisapproximation result by looking at an extended neighborhood of the leftmost vertexin the uppermost row. Our algorithm is based on 
hoosing a set of verti
es in theneighborhood of the leftmost vertex in the uppermost row, so that the size of this setis no less than 2=3 of a maximum independent set in the indu
ed subgraph of thoseverti
es removed from the graph. Clearly this generates a �nal solution that is 2=3 ofthe optimal, sin
e all greedy de
isions are at least 2=3 of the lo
al optimal. Note thatthe resulting graph after removing a vertex along with all its neighbors still has the
hara
teristi
s of the original as proven in Lemma 2.2Our de
ision pro
ess BinTreeDe
ision is depi
ted as a binary de
ision tree inFig. 4.1. In this tree, internal nodes indi
ate 
onditions, and the leaves list the verti
esadded to the independent set. We present the pseudo
ode of the algorithm below.
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ision tree for algorithm MNDB-APX. v 
orresponds to the leftmost vertex in theuppermost row, and the neighboring verti
es in the X-grid are marked in Fig. 4.2. We take the leftbran
h if the label vertex is in V , and the right bran
h otherwise. We pro
eed until we rea
h a leaf,whi
h 
ontains the set S that will be added in the independent set.
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?Fig. 4.2. Vertex neighborhood 
onsidered for ea
h 
all to BinTreeDe
ision. The positions viare used in the de
ision tree, while the positions ui are only used in the analysis.Algorithm MNDB-APXI  ;while V 6= ;v  leftmost vertex on the uppermost rowS  BinTreeDe
ision(v)I  I [ Sremove S and its neighborhood from Gendwhilereturn ILemma 4.1. Algorithm MNDB-APX runs in linear time in the number of blo
ksin the matrix.Proof. Ea
h iteration of the algorithm requires a traversal of the binary de
isiontree from the root to a leaf, whi
h takes at most 8 steps, thus O(1) time. Also at leastone vertex is removed from the graph at ea
h iteration. Thus the time for the de
isionpro
ess is linear in the number of verti
es in the graph. The only other operation thata�e
ts the 
ost is �nding the leftmost vertex in the uppermost row. In a prepro
essingstep one 
an go through the matrix in a left to right fashion and store pointers to theblo
ks so that vij appears before vkl i� i < k or i = k and j < l. After this it takes
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onstant time to �nd the 
urrent leftmost vertex on the uppermost row.Lemma 4.2. The size of the maximal independent set returned by AlgorithmMNDB-APX is no smaller than 2=3 of the size of maximum independent set on theinterse
tion graph.Proof. The proof is based on 
ase by 
ase analysis. We show that BinTreeDe
i-sion(v) of Fig. 4.1 always returns an independent set S su
h that N (S) 
ontains noindependent set larger than 1:5 jSj, where N (S) denotes the neighborhood of S, i.e.,the set of verti
es in S or adja
ent to a vertex in S. Below we examine the binarysear
h tree 
ase by 
ase:. v5 62 V S = fvg, and v and its neighbors form a 
lique with MIS size 1.v5 2 Vv1 62 V By the 
losure property v2 62 V , and we have the following:v6 62 V S = fvg, and v and its neighbors form a 
lique with MIS size 1.v6 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the 
losure property u1 62 V . In this 
ase, if one of v9 orv8 is not in V , then S = fv5; v6g, sin
e their neighborhoodhas MIS size at most 3. Otherwise, v8; v9 2 V :v7 62 V This implies u2 62 V and:v10 62 V S = fv5; v6g and N(S) has MIS size at most 3.v10 2 V S = fv; v8; v9; v10g, and N(S) has MIS size at most 6.v7 2 Vv3 2 V S = fv; v3g, and N(S) has MIS size at most 3.v3 62 V S = fv; v7g, and N(S) has MIS size at most 3.v1 2 Vv2 2 V S = fv; v2g, and N(S) has MIS size at most 3.v2 62 V By the 
losure property v3 =2 V , andv7 62 V S = fv1g, v1 and its neighbors form a 
lique, and the MISis of size 1.v7 2 Vv4 2 V S = fv; v4g, and N(S) has MIS size at most 3.v4 62 V By the 
losure property u1 62 V , and if one of v8 or v9 isnot in V , then S = fv1; v5g, and N(S) has a MIS size atmost 3. Otherwise if v8; v9 2 V , then S = fv; v7; v8; v9g,and N(S) has MIS size at most 6.Theorem 4.3. Algorithm MNDB-APX is a linear time, 2=3-approximation al-gorithm for the MNDB problem.Proof. Follows dire
tly from Lemma 4.1 and Lemma 4.2.Generalization of our 2/3-approximation algorithm for larger blo
ks is still underinvestigation. We expe
t the runtime and the approximation ratio to depend on theblo
k size.5. Alternative Substru
tures. We have so far fo
used our dis
ussions on �nd-ing dense re
tangular blo
ks in a matrix. In this se
tion, we will dis
uss generalizationsof our results to alternative substru
tures that might be exploited to improve memoryperforman
e. We will �rst dis
uss diagonal blo
ks. Then we will introdu
e a 
rosssubstru
ture and its variants, and prove that MNS problem is NP-
omplete for �ndingthese substru
tures.5.1. Diagonal Blo
ks. In many appli
ations, nonzeros of the sparse matrix arelined around the main diagonal in the form of long diagonals. This makes diagonal
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(c)(b)(a)Fig. 5.1. Matrix rotations. (a) the original matrix, (b) after Rotation 1, (
) after Rotation 2.blo
ks a ni
e alternative to re
tangular blo
ks. We de�ne a diagonal blo
k as follows.Given an M �N matrix A = (a(i; j)), we say d(i; j) is an m� n diagonal blo
k in Ai� 8k; l; i � l < i+m; 0 � k < n; a(l + k; j + k) 6= 0:To �nd diagonal blo
ks in a sparse matrix, we 
an rotate the diagonals to trans-form diagonal blo
ks to re
tangular blo
ks, so that our results for re
tangular blo
ks
an be applied dire
tly. Our rotation is depi
ted in Fig. 5.1, and we de�ne it as follows.Rotation 1: Given an M �N matrix A, its rotated matrix AR is an M +N � 1�Nmatrix so that A(i; j) 6= 0 i� AR(i+ N � j � 1; j) for 0 � i < M and 0 � j < N .Theorem 5.1. Given matrix A, let A1 be its rotated matrix under Rotation 1.d(i; j) is a diagonal blo
k in A, i� d(i+ N � j � 1; j) is a re
tangular blo
k in A1.Proof. Ne
essity: Let d(i; j) be a diagonal blo
k in A. By de�nition of a diagonalblo
k, and de�nition of Rotation 1, after transformation, we will have8k; l; i � l < i +m; 0 � k < n; A1(l +N � j � 1; j + k) 6= 0=) 8k; l; 0 � l < m; 0 � k < n; A1(i+ N � j � 1 + l; j + k) 6= 0:Thus d(i+N � j � 1) is an m � n re
tangular blo
k in A1.SuÆ
ien
y: Let d(i + N � j � 1; j) be an m � n re
tangular blo
k in A1. Thismeans before Rotation 1 we had,8k; l; 0 � l < m; 0 � k < n; A(i +N � j � 1� N + j + 1 + l + k; j + k) 6= 0=) 8k; l; i � l < i +m; 0 � k < n; a1(l + k; j + k) 6= 0:Thus d(i; j) is an m � n re
tangular blo
k in A.Corollary 5.2. Given a matrix A and a positive integer K. The problem ofde
iding if A has at least K nonoverlapping diagonal blo
ks is NP-
omplete.Corollary 5.3. Algorithm MNDB-APX is a linear time 2=3-approximationalgorithm to �nd maximum number of nonoverlapping diagonal blo
ks.



14 V. Vassilevska and A. Pinar0� xx x xx 1A 0� x xxx x 1A 0� x xxx x 1A(a) (b) (
)0� x xxx x 1A 0� xx x xx 1A 0� xx x xx 1A(d) (e) (f)Fig. 5.2. (a) Cross blo
k, (b) diagonal 
ross blo
k, (
){(f) jagged 
ross blo
ks5.2. Cross Blo
ks. Various regular substru
tures in a sparse matrix 
an beexploited to improve memory performan
e of sparse matrix 
omputations. One pos-sibility is the 
ross blo
ks depi
ted in Fig. 5.2(a). We will identify a 
ross blo
k withits 
enter, that is we say 
(i; j) is a 
ross blo
k in a matrix A i� A has nonzeros atpositions (i; j), (i; j � 1),(i � 1; j), (i; j + 1), and (i + 1; j). Below, we prove that�nding a maximum number of nonoverlapping 
ross blo
ks is NP-
omplete by usingour proof of Theorem 3.4 as a template.Theorem 5.4. Given a matrix A and a positive integer K. The problem ofde
iding if A has at least K nonoverlapping 
ross blo
ks is NP-
omplete.Proof. It is easy to see that this problem 
an be redu
ed to the independent setproblem, and thus it is in NP. For the NP-
ompleteness proof we use a redu
tion fromthe independent set problem on 
ubi
 planar graphs. First we use Theorem 2.3 toembed the 
ubi
 planar graph onto a grid and then enlarge the grid by 20 as we did forthe proof of Theorem 3.4. We 
an repla
e ea
h vertex on this grid with a 
ross patternin the matrix. Formally, for an M � N grid, we de�ne a 2M + 1 � 2N + 1 matrix,where grid point (i; j) is repla
ed by a 
ross 
entered at (2i+1; 2j+1) in the matrix.A does not have any other nonzeros besides those in 
ross blo
ks 
orresponding tovertex points. Observe that there are no 
ross blo
ks in A, besides those representinggrid points. Also observe that unlike the 
ase for re
tangular blo
ks, bends and T-jun
tions do not 
ause any problems, sin
e the 
ross to the left and below the 
ornervertex of a bend do not overlap.The only problem is to make sure ea
h edge in G is repla
ed by an even lengthpath. For this purpose we use the transformation illustrated in Fig. 5.3. Observe thatthis transformation repla
es a 
hain of odd length with a 
hain of even length, and
onsequently making sure of edges in G are repla
ed with even length paths.We 
an use matrix rotations to redu
e the problems of �nding other blo
ks inFig. 5.2(b{f) to the problem of �nding 
ross blo
ks as in Fig. 5.2(a). For instan
e,Rotation 1 transforms jagged 
rosses, whi
h are illustrated in Fig. 5.2(
) to regular
rosses.Theorem 5.5. Given matrix A, let A1 be its rotated matrix under Rotation 1.
(i; j) is a diagonal 
ross blo
k in A, i� 
(i + N � j � 1; j) is a 
ross blo
k in A1.Proof. The proof only requires applying Rotation 1 to the de�nition a 
ross blo
kas for the proof of Theorem 5.1.Corollary 5.6. Given a matrix A, and a positive integer K. The problem of
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Fig. 5.3. Odd- to even-length path transformation for 
ross blo
ks.de
iding if A 
ontains at least K nonoverlapping jagged 
ross blo
ks is NP-
omplete.Similar transformation operators 
an be transformed for variations of the jagged
ross blo
k in Fig. 5.2(d{f). Now we introdu
e a new rotation operator to transformdiagonal 
ross blo
ks of Fig. 5.2(b) to regular 
ross blo
ks. This rotation is depi
tedin Fig. 5.1 and below we de�ne it formally.Rotation 2: Given an M � N matrix A, its rotated matrix AR is an M + N � 1 �M + N � 1 matrix so that A(i; j) 6= 0 i� AR(i� j +N � 1; i+ j) for 0 � i < M and0 � j < N .Theorem 5.7. Given matrix A, let A2 be its rotated matrix under Rotation 2.
(i; j) is a diagonal 
ross blo
k in A, i� 
(i+N � 1� j; i+ j) is a 
ross blo
k in A2.Proof. The proof only requires applying Rotation 2 to the de�nition a 
ross blo
k.Corollary 5.8. Given a matrix A, and a positive integer B. The problem ofde
iding if A 
ontains at least B nonoverlapping diagonal 
ross blo
ks is NP-
omplete.Observe that a greedy algorithm that 
hooses the leftmost blo
k in the uppermost row will yield a 1/2 approximation algorithm for �nding 
ross blo
ks, and all itsvariations.6. Open Problems. This work studies a new problem for the sparse matrix
omputations 
ommunity, and brings forth many open problems. One interestingfamily of problems is the design of heuristi
s for larger blo
ks and di�erent substru
-tures, and developing better approximation algorithms. As we dis
ussed in Se
tion 4,our 2/3-approximation algorithm might be generalized for larger blo
ks, where theruntime 
omplexity will depend on the blo
k size. Another interesting question is ifit would be possible to improve the approximation ratio by looking at a larger neigh-borhood of the leftmost vertex of the uppermost row. Finally, di�erent substru
turesrequire di�erent heuristi
s. For instan
e the neighborhood stru
ture of the 
ross blo
kis fairly di�erent than that of the re
tangular blo
k, and thus our 2/3-approximationalgorithm 
annot be applied dire
tly.
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h to redu
e memory indire
tions is repla
ing stru
tural nonze-ros of the matrix with numeri
al zeros. As shown in [10℄, by sele
tively repla
ingstru
tural zeros with numeri
al zeros, it is possible to gain signi�
ant speedups dueto better memory performan
e, even though the number of 
oating point operationsin
rease. This te
hnique 
alls for another interesting 
ombinatorial problem. In this
ase, we need to 
hoose blo
ks to make sure all nonzeros are 
overed, and we try todo this by using as few blo
ks as possible. We 
all this problem the minimum blo
k
over problem, and de�ne it as follows.Given a sparse matrix A, and an oriented substru
ture �, pla
e min-imum number of substru
tures on A, so that all its nonzeros are
overed.Noti
e that this problem is a 
overing problem, whereas the maximum nonoverlap-ping substru
tures problem was an independent set problem. However, the relationbetween the two problems is not as 
lear as the relation between the independent set,and vertex 
over problems on graphs.Finally, in this paper we 
onsidered �nding only one spe
i�ed stru
ture in thematrix. However it is possible to split a matrix into three or more matri
es (e.g.,A = A2d + A1d + As, so that ea
h matrix 
ontains a di�erent substru
ture. In su
h ade
omposition, the obje
tive will be minimizing the total number of blo
ks in all ma-tri
es. Clearly, this problem is mu
h harder, and even good approximation algorithms(provably or pra
ti
ally) will be valuable.7. Con
lusions. We studied the problem of �nding maximumnumber of nonover-lapping substru
tures in a sparse matrix, whi
h we 
alled the maximum nonoverlap-ping substru
tures problem. Su
h substru
tures 
an be exploited to improve memoryperforman
e of sparse matrix operations by redu
ing the number of memory indire
-tions. We fo
used on m�n dense blo
ks as a substru
ture (maximumnonoverlappingdense blo
ks problem) due to their availability in sparse matri
es arising in various ap-pli
ations, and e�e
tiveness in de
reasing extra load operations. We investigated therelation between the maximum independent set problem and the maximum nonover-lapping substru
tures problem, and de�ned a 
lass of graphs where the independentset problem is equivalent to the maximum nonoverlapping dense blo
ks problem. Weused this relation to prove the NP-
ompleteness of the maximumnonoverlapping denseblo
ks problem. Our proof used a redu
tion from the maximum independent set prob-lem on 
ubi
 planar graphs and adopted orthogonal drawings of planar graphs. Wealso presented an approximation algorithm for the maximum nonoverlapping denseblo
ks problem for 2�2 blo
ks. Our algorithm require only linear time and spa
e, andgenerate solutions whose sizes are within 2=3 of the optimal. We also des
ribed a 1/2approximation algorithm that work for larger blo
ks and di�erent substru
tures. Wedis
ussed generalizations of our results to di�erent substru
tures and observed the re-lation between diagonal blo
ks and re
tangular blo
ks to show that the two problemsare equivalent and one 
an be redu
ed to the other by a matrix transformation. Wealso dis
ussed 
ross blo
ks and proved that MNS problem is NP-
omplete for 
rossblo
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